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Abstract. Some time ago, in a remarkable paper, Hofstadter showed that the energy
spectrum of a spinless tight-binding électron, moving in a constant magnetic field B, has
2 very complicated recursive structure. In this article, we shall show that, these energy
levels satisfy a simple sum rule. Then, as an application of this sum rule, we show why
a proposition on the absolute minimum of the energy of this system, which was made
by Hasegawa er al, holds in general cases.

Hofstadter showed [1] some very interesting results on the dependence on the
magnetic field of the energy spectrum of a two-dimensional tight-binding electron
system. In particular, he found that, when the number of flux quanta per unit cell,
¢/ ¢y (¢y = he/eis the quantum of the magnetic flux), is a rational number p/gq, the
tight-binding band is split up into ¢ non-overlapping subbands. He also showed that
the energy spectrum as a function of the magnetic field exhibits a recursive structure.
Since then, this recursive structure has been vigorously studied {2-5].

In a recent article [6], Hasegawa er a! made an interesting observation about
the energy of the ground state of this system. By numerical calculations for several
specific rational values of flux quanta per unit cell, they found that, for a fixed electron
filling o« = p/q of the lattice, the total energy E of the electrons has an absolute
mirimum at ¢/¢, = «. Based on this observation, Lederer, Poilolanc and Rice
proposed a new mechanism for superconductivity [7]. The result of Hasegawa et al
has been conformed by other authors [8-10].

In this article, we would like to reveal another interesting property of the energy
spectrum of this system. We shall first show that, although the energy spectrum has
a very complicated recursive structure, the energy levels satisfy a simple sum rule.
Then, as an application of this sum rule, we show that the total energy E of the
electrons has indeed an absolute minimum at ratio ¢ /¢, = o, which is the electron
filling of the lattice.

We take a finite square lattice A with N, = L x L sites and impose the periodic
boundary condition on it. Assume that the constant magnetic field B is perpendicular
to the lattice plane. Then, the motion of a spinless free electron in the lattice is
described by the following Hamiltonian

{if)

where ¢} (¢;) is the electron creation (annihilation) operator at site ¢ and {i5) denotes
a pair of nearest-neighbour sites of the lattice. The hopping constants {t;;} are
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determined by the so-called ‘Peierls substitution’. In the simplest case, they are
defined by

7
;= texp { —2ri / A -dl /qﬁu} if : and j are the nearest neighbours @
t

0 otherwise

where A is the vector potential of the magnetic ficld B. In the following, we shall
use the Landau gauge A = B(0,z,0). Notice that, due to the periodic boundary
condition, there will be an additional phase factor to the hopping constants {¢;;}
associated with the boundary bonds. But, as we shall show in the following, all the
phase factors will be cancelied out in the final result. Therefore, we can ignore these
additional phase factors from the beginning. We further notice that the lattice A is
bipartite with respect to the Hamiltonian (1), i.e. its sites can be divided into two
groups, A and B. For two lattice sites { and j in the same group, the hopping
constant ¢,; is identically zero. This observation is indispensible for the proof of our
sum rule. It is pot difficult to see that we have a natural partition of the square lattice
A in terms of the definition of {t,;}.
Now, we can summarize our mam result in the following theorem;

Theorem. For an arbitrary constant magnetic field B, the eigenvalues of Hamiltonian
(1) are paired, ie. for any positive eigenvalue ¢ of the Hamiltonian, there is also a
negative eigenvalue —e. The total number of the eigenvalues is N,. Furthermore,
these eigenvalues satisfy the following sum rule

Na
Z €2 = z1’N, 3)

izl
where z is the coordination number of the lattice.
Proof. By choosing a basis of the state vectors, we can write the Hamilonian in a

matrix. Let ¢; € €; < --- € €y, be the cigenvalues of H. Then, they are given by
the solutions of the following algebric equation

det{ ] - H) =0. C))
It is not difficult to see that the set of the state vectors defined by
;=clly iea )

where [0) is the vacuum state, is a basis of the Hilbert space of this system. The

total number of these vectors is V,. We now divide {¥,} into two groups A and

B in the following way. If i belongs to set A(B) of the partition of lattice A,

then W, is defined to be in A(B). By the definition of {¢;;}, we can easily see

that (¥, {H |V ) = 0if ¥; and ¥; are in the same group. Therefore, the matrix of
Hamiltonian (1) has a block form

Hz;z; Hziz 0 T

o[t 2] (2 3 s

si Hpp Tt 0 ©

where each block is an N, /2 x N, /2 submatrix and O denotes the zero submatrix.

Furthermore, a direct calculation shows that there are exactly » non-zero elements in

each row of submatrix 7". To determine the eigenvalues of H, the following lemma
is very useful.
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Lemma. Let M be an 2N x 2N matrix with a block form
A B
u=4 7] . ¢

where A, B,C and D are N x N square submatrices. Then, the determinant of A
is given by

det M = det Adet(D — CA™'B). ®)

In particular, if A commutes with C, then det M = det(AD — C'B) and it holds
even if A has no inverse.

A proof of this lemma can be found in [12] page 17.

Applying this lemma to matrix M = A — H, we immediately obtain

det( A — H) = det( N - T1T) ©)

since Al commutes with any matrix. Therefore, if X is a root of the characteristic
equation of H, —A is also a root, ie. the eigenvalues of I are paired. Furthermore,
by using the well known relation between the trace and the eigenvalues of a matrix,
we obtain the following identity from equation (9)

Na
Y =21 (T'T). (10)

i=1

The factor 2 is due to the fact that each eigenvalue of T T is counted twice in the
sum of (10). The right-hand side of the above equation can be easily evaluated. Since
H contains only hopping terms, each diagonal element (¥, |T1T|¥,) is a sum of the
contributions from those two-steps-returning walks. A little algebra yields its value,
zt%, which is a positive quantity independent of the magnetic field. Therefore

tr (T1T) = Lz42N, (11)

Substituting (11} into equation (10), we obtain sum rule (3).
Our proof is thus accomplished. O

Some remarks are in order.

Remark 1. Following the above proof, one can easily generalize sum rule (3) to
other type of lattices as long as they are bipartite with respect to the Hamiltonian.
In other words, the hopping coefficients {¢;;} can be more complicated than those
given by definition (2). Consequently, the constant =N, on the right-hand side of
equation (3) must also be changed.

Remark 2. In our proof, we have assumed that the spin-freedom of electrons is
polarized by the external magnetic field B. Therefore, we can treat them as spinless
fermions. If B is weak and the spin of electrons is unpolarized, the constant z#2N,
of equation (3) should be multiplied by a factor 2.
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Remark 3. For technical convenience, we let N,, the number of lattice sites, be
an even number in the proof. In the thermodynamic limit, this should not put real
restriction on our theorem.

Next, as an application of sum rule (3), we would like to argue why the absolute
minimum of the encrgy E of electrons in this system is attained when the number
of the magnetic flux quanta per cell ¢,/¢ equals p/q, the electron filling of the
lattice. In the following, we shall only consider a finite lattice while Hasegawa er
al did their calculations directly for an infinite lattice. In this way, we make our
argument more intuitive. One can easily see that the final conclusion should still hold
in the thermodynamic limit. Another point is worthwhile mentioning., Notice that E
is symmetric about the half-filling point o = 1/2. Therefore, we need only consider
these fillings which is less than one half in the following,

First, we mmtroduce a N, /2—dimensional space and give sum rule (3) a geometric
explanation. By setting up a coordinate system, we see that, as the magnetic field
B changes, the corresponding sets of the ordered non-positive eigenvalues ¢; <
€ € -+ € €y,/2 < 0 (other eigenvalues are non-negative since the eigenvalues are
paired) of the Hamiltonian can be represented by points in this space. Geometrically,
sum rule (3) tells us that the totality of these points is, in fact, a subset of the
N, /2—dimensional sphere defined by

Naj2 2

zt“ N
Y &= _Z—AERZ. (12)
i=1

When the electron filling equals o = N/N, < 1/2, the energy of the ground state is
given by

E=g+ e+ +exv=—(gl+ e+ + lenl) (13)

and it is a continuous function of the magnetic field B. Assume that E reaches its
absolute minimum at ¢/¢, = 8. Then, the projection of the radical vector

R=(—e(9/dy), 2@/ D)y -5 _GNA/2(¢’/¢U)) (14)

into the subspace V spanned by (e, e,, - -+, 5 ), Where e, is the unit vector in the
ith direction, should be maximal at ¢/¢, = B. Consequently, by sum rule (3), the
projection of R into the complementary subspace V' spanned by (ey 1,5 €p, /2)
should be minimal. In other words, a gap deveiopes between the energy levels e, and
€1 and this gap should reach its maximum when ¢/¢, = B. On the other-hand,
by Wannier's work [2], we know that the largest gap in the recursive structure of the
energy spectrum appears at 3 = . Therefore, for a fixed electron filling o, the
maximal projection of R into the subspace V' is achieved at ¢/¢y = 8 = o = p/q.
That explains the observation made by Hasegawa ef af [6].

Although we do not claim that the above argument is rigorous, we do hope that
it sheds some light on the relation between the recursive structure of the energy
spectrum and the exact energy of the gound state of this system.
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Note added in proof. After submission of this work, 1 received a preprint by E Lieb and M Loss.
They studied the balf-filled case. They have partially solved the problem of the lowest total energy
and completely solved the problem for determinanis (i.e. for products of eigenvalues instead of sums of
eigenvalues) on bipartite planar graghs. I would like to thank them for their encouragement.
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