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Abslrad. Some lime ago, in a remarkable paper, Hoistadter showed lhal the energy 
spectrum of a spinless tight-binding electron, moving in a mnstant magnetic field B, has 
a vety mmplicaled recursive structure. In lhis article, we shall show that, these energy 
levels satisfy a simple sum mle. m e n ,  as an application of this sum rule, we show why 
a proposition on the absolute minimum oi the energy of this system, which was made 
by Hasegawa ef ol, holds in general cases. 

Hofstadter showed [l] some very interesting results on the dependence on the 
magnetic field of the energy spectrum of a two-dimensional tight-binding electron 
system. In particular, he found that, when the number of flux quanta per unit cell, 

(+,, = hc/e  is the quantum of the magnetic flux), k a rational number p / q ,  the 
tight-binding band is split up into q non-overlapping subbands. He also showed that 
the energy spectrum as a function of the magnetic field exhibits a recursive structure. 
Since then, this recursive structure has been vigorously studied [Z-51. 

In a recent article [6], Hasegawa er a1 made an interesting observation about 
the energy of the ground state of this system. By numerical calculations for several 
specific rational values of flux quanta per unit cell, they found that, for a fixed electron 
filling a = p/q of the lattice, the total energy E of the electrons has an absolute 
minimum at +/+,, = a. Based on this observation, Lederer, Poilolanc and Rice 
proposed a new mechanism for superconductivity [7]. The result of Hasegawa el al 
has been conformed by other authors [&lo]. 

In this article, we would like to reveal another interesting property of the energy 
spectrum of this system. We shall first show that, although the energy spectrum has 
a very complicated recursive structure, the energy levels satisfy a simple sum rule. 
Then, as an application of this sum rule, we show that the total energy E of the 
electrons has indeed an absolute minimum at ratio = a, which is the electron 
filling of the lattice. 

We take a finite square lattice A with N A  = L x L sites and impose the periodic 
boundaly condition on it. Assume that the constant magnetic field B is perpendicular 
to the lattice plane. Then, the motion of a spinless free electron in the lattice is 
described by the following Hamiltonian 

(1) 

where c t ( c i )  is the electron creation (annihilation) operator at site i and (ij) denotes 
a pair of nearest-neighbour sites of the lattice. The hopping constants { t i j }  are 
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determined by the so-called 'Peierls substitution'. In the simplest case, they are 
defined by 

otherwise 
where A is the vector potential of the magnetic field B .  In the following, we shall 
use the Landau gauge A = B(O,z,O). Notice that, due to the periodic boundary 
condition, there Will he. an additional phase factor to the hopping constants { t i j }  
associated with the boundary bonds. But, as we shall show in the following, all the 
phase factors will be cancelled out in the final result. Therefore, we can ignore these 
additional phase factors from the beginning. We further notice that the lattice A is 
bipartite with respect to the Hamiltonian (I), i.e. its sites can he divided into two 
group, A and B. For two lattice sites i and j in the same group, the hopping 
constant t i j  is identically zero. This observation is indispensible for the proof of our 
sum rule. It is not diliicult to see that we have a natural partition of the square lattice 
A in terms of the definition of I t i j } .  

Theorem. For an arbitrary constant magnetic field B, the eigenvalues of Hamiltonian 
(1) are paired, Le. for any positive eigenvalue E of the Hamiltonian, there is also a 
negative eigenvalue --E. The total number of the eigenvalues is N,. Furthermore, 
these eigenvalues satisfy the following sum rule 

Now, we can summarize our main result in the following theorem; 

NA 
E: = z t2N,  

;=I 

where z is the coordination number of the lattice. 

(3) 

By choosing a basis of the state vectors, we can write the Hamilonian in a 
matrix. Let c 1  6 c2 < . . . 6 cNn be the eigenvalues of H. Then, they are given by 
the solutions of the following algebric equation 

det( X I  - H) = 0. (4) 
It is not dimcult to see that the set of the state vectors defined by 

vi = c,t 10) i E A  ' (5) 
where 10) is the vacuum state, is a basis of the Hilbert space of this system. The 
total number of these vectors is N,. We now divide {Qi} into two groups A and 
B in the following way. If i belongs to set A ( B )  of the partition of lattice A, 
then Y i  is defined to be in A(@. By the definition of {tij), we can easily see 
that (QjlHl@j) = 0 if q i  and Wj are in the same group. Therefore, the matrix of 
Hamiltonian (1) has a block form 

where each block is an N,/2 x N,/2 submatrix and 0 denotes the zero submatrix. 
Furthermore, a direct calculation shows that there are exactly z non-zero elements in 
each row of submatrix T. To determine the eigenvalues of H, the following lemma 
is very useful. 
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Lemma. Let M be an 2 N  x 2N matrix with a block form 

A B  
M = [ c  D] 

where A, B, C and D are N x N square submatrices. Then, the determinant of M 
is given by 

d e t M = d e t A d e t ( D - C A - ' B ) .  (8) 

In particular, if A commutes with C, then det M = dct(AD - CB) and it holds 
even if A has no inverse. 

A proof of this lemma can be found in'[ lZ]  page 17. 
Applying this lemma to matrix M = X I  - H, we immediately obtain 

det(XI- H )  = det(X21 - TtT)  (9) 

since X I  commutes with any matrix. Therefore, if x is a root of the characteristic 
equation of H ,  -i is also a mot, i.e. the eigenvalues of H are paired. Furthermore, 
by using the well known relation between the trace and the eigenvalues of a matrix, 
we obtain the following identity from equation (9) 

N A  

C E f = 2 t r  (T tT ) .  
i=l 

The factor 2 is due to the fact that each eigenvalue of TtT is counted twice in the 
sum of (10). The right-hand side of the above equation can be easily evaluated. Since 
A contains only hopping terms, each diagonal element (@ilTtTIQi) is a sum of the 
contributions from those two-stepreturning walks. A little algebra yields its value, 
zt2,  which is a positive quantity independent of the magnetic field. Therefore 

tr (T'T) = f&NA (11) 

Substituting (11) into equation (lo), we obtain sum rule (3). 
Our proof is thus accomplished. 

Some remarks are in order. 

Remark 1. Following the above proof, one can easily generalize sum rule (3) to 
other type of lattices as long as they are bipartite with respect to the Hamiltonian. 
In other words, the hopping coefficients I t i j )  can be more complicated than those 
given by definition (2). Consequently, the constant z t 2 N A  on the right-hand side of 
equation (3) must also be changed. 

Remark 2. In our proof, we have assumed that the spin-freedom of electrons is 
polarized by the external magnetic field E. Therefore, we can treat them as spinless 
fermions. If E is weak and the spin of electrons is unpolarized, the constant z t 2 N A  
of equation (3) should be multiplied by a factor 2 
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Remark 3. For technical convenience, we let N,,, the number of lattice sites, be 
an even number in the proof. In the thermodynamic limit, this should not put real 
restriction on our theorem. 

Next, as an application of sum ruIe (3), we would like to argue why the absolute 
minimum of the energy E of electrons in this system is attained when the number 
of the magnetic flux quanta per cell &/$ equals p / q ,  the electron filling of the 
lattice. In the following, we shall only consider a finite lattice while Hasegawa er 
af did their calculations directly for an infinite lattice. In this way, we make our 
argument more intuitive. One can easily see that the final conclusion should still hold 
in the thermodynamic limit. Another point is worthwhile mentioning. Notice that E 
is symmetric about the half-filling p i n t  a = 1/2. Therefore, we need only consider 
these fillings which is less than one half in the following. 

First, we introduce a NA/2-dimensional space and give sum rule (3) a geometric 
explanation. By setting up a coordinate system, we see that, as the magnetic field 
E changes, the corresponding sets of the ordered non-positive eigenvalues E ,  < 
c2 < . . . < eNnlZ < 0 (other eigenvalues are non-negative since the eigenvalues are 
paired) of the Hamiltonian can be represented by points in this space. Geometrically, 
sum rule (3) tells us that the totality of these points is, in fact, a subset of the 
NA/2-dhensional sphere defined by 

When the electron filling equals a 
given by 

N/N, 4 1/2, the energy of the ground state is 

(13) 
and it is a continuous function of the magnetic field B. Assume that E reaches its 
absolute minimum at 4/$,, = p. Then, the projection of the radical vector 

E = €1 + €2 + . . .  + EN = -(le11 + le21 + . . .+  I~NI )  

It= ( - € I ( ' $ / ~ U ) ,  -Ez(d/4uU). ' ' ' 9  - ~ N ~ / z ( ~ / ~ L I ) )  ('4) 

into the subspace V spanned by (el, e2, . .. , eN), where e; is the unit vector in the 
ith direction, should be maximal at +/du = p. Consequently, by sum rule (3), the 
projection of R into the complementary subspace V I  spanned by (eNfl,  . . . , eNhlz) 
should be minimal. In other words, a gap developes between the energy levels eN and 
'Nt1 and this gap should reach its maximum when c$/& = p. On the other-hand, 
by Wannier's work [2], we know that the largest gap in the recursive structure of the 
energy spectrum appears at p = a. Therefore, for a k e d  electron hlling a, the 
maximal projection of R into the subspace V is achieved at +/$,, = p = a = p / q .  
That explains the observation made by Hasegawa et a1 [6]. 

Although we do not claim that the above argument is rigorous, we do hope that 
it sheds some light on the relation between the recursive structure of the energy 
spectrum and the exact energy of the gound state of this system. 
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